Tag: coding

codedev pot

hot operators

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/

its the power of operators, so always learn try and play

OperatorsCategory or name
x.yf(x)a[i]x?.yx?[y]x++x--x!newtypeofcheckeduncheckeddefaultnameofdelegatesizeofstackallocx->yPrimary
+x-x!x~x++x--x^x(T)xawait&x*xtrue and falseUnary
x..yRange
switchwithswitch and with expressions
x * yx / yx % yMultiplicative
x + yx – yAdditive
x << yx >> yx >>> yShift
x < yx > yx <= yx >= yisasRelational and type-testing
x == yx != yEquality
x & yBoolean logical AND or bitwise logical AND
x ^ yBoolean logical XOR or bitwise logical XOR
x | yBoolean logical OR or bitwise logical OR
x && yConditional AND
x || yConditional OR
x ?? yNull-coalescing operator
c ? t : fConditional operator
x = yx += yx -= yx *= yx /= yx %= yx &= yx |= yx ^= yx <<= yx >>= yx >>>= yx ??= y=>Assignment and lambda declaration
operators
smartcard world

smartcard steps

creating objects AMR cmd

  • DataAccessRightTemplate
  • creating All enum values for reducing lines of code
  • object with several keys
  • diff data
  • selection of different levels gd and ad
  • exception catcher for not implemented parts
  • authentication squence more or less unclear
  • changing access rights for according hex tag hex hex

steps contd

  • remove try catch blocks
  • remove pragma directives
Uncategorized

conda jupyter tensorflow

found on #stackoverflow
https://stackoverflow.com/a/43259471/1650038

Create a virtual environment - conda create -n tensorflowx

  • conda activate tensorflowx

So then the next thing, when you launch it:

  1. If you are not inside the virtual environment type - Source Activate Tensorflow
  2. Then inside this again install your Jupiter notebook and Pandas libraries, because there can be some missing in this virtual environment

Inside the virtual environment just type:

  1. pip install jupyter notebook
  2. pip install pandas

Then you can launch jupyter notebook saying:

  1. jupyter notebook
  2. Select the correct terminal python 3 or 2
  3. Then import those modules

! start jupy from project folder in Documents

.py files

git init
add commit
git remote add origin  <REMOTE_URL> 
git push remot origin

conda jupyter tensorflow: github condjup is local xfold repo
vs code debug tensorflo: repo deepflo
docker tensorflow image: once again:
docker run -it --rm -v $(realpath ~/notebooks):/tf/notebooks -p 8888:8888 tensorflow/tensorflow:latest-jupyter
https://codeflysurf.com/2021/11/22/running-tensorflow-in-jupyter-notebook-docker/